“今天十号,好像是清华学报出刊的时间,不知道机械制图会不会一同出刊……算了,不管,距离建立思维有限元分析系统还有最后一点进度,争取这个星期之内搞定。”余华放下钢笔,默默思索。

    【推荐下,咪咪追书真的好用,这里下载大家去快可以试试吧。】

    罗庚今天要上三节数学课,下午才会回来,课后作业忙完,余华起身来到办公桌前,伏案钻研复习师父华罗庚讲解的拉格朗日中值定理。

    学而时习之,学是接触知识的阶段,习是将知识转化为自身的阶段。

    回顾今日数分课讲解的知识点,将其拆分开来,进行知识重构,从多角度和多方面进行深层次理解,融会贯通过后,这才算完。

    紧接着,余华翻开数分书,预习即将讲述的罗尔定理和柯西中值定理。

    从本质上讲,众多中值定理都是拉格朗日中值定理的特殊情况和推广,乃至延伸,不过,罗尔定理却很特殊,语言表述为拉格朗日中值定理的函数,在两个端点的函数值相等。

    学习这个有什么实际用处呢?

    似乎没有。

    但却是研究特定函数的重要工具,对余华而言更是极为重要。

    余华神态认真,眼神专注,仔细学习罗尔定理证明过程和相关知识点。

    现如今,随着知识层次和知识信息熵越来越高,加之大脑进化幅度低于高等知识的信息熵增长幅度,余华整个人的学习效率逐渐呈下降趋势,对于蕴含高信息熵的数学知识点,再也不像之前学习初等数学时的简单轻松。

    信息熵是某一段信息的平均信息量,信息熵越高,其中蕴含的信息量也就越高,这是信息论之父香农将在1948年正式公布的信息领域概念,现在香农大佬还不知道在哪儿。

    从信息论角度讲,数学分析的每一个知识点和每一个理论,都是高信息熵的典型例子。

    若要问具体有多高?

    假设初等数学体系的一元二次方程,信息熵数值为5,那么,眼前正在学习的罗尔定理信息熵便是20,困扰数学界二百多年的哥猜信息熵可能高达500,甚至破千。

    这么一看,就极为只管,但光有数值,并不严谨。

    因为,还有信息理解难度。

    这个概念很好理解,典型例子就是老师上课讲三角函数,学霸轻松理解,差生却看得满脸懵逼,直到四十分钟后下课,还不懂什么是三角函数。

    信息理解难度固定,理解速度取决于人的接受信息熵总效率。

    普通人接受信息熵的总效率,一般在0.05—1区间每天,天才一般在1-5区间每天,而这往往就是学渣和学霸的差距。

    学渣学个一元二次方程要十天半个月,优生只需要看一眼就懂,根本没法比。